

StarCellBio Exercise 1 – Protein localization

Goal

In this exercise, you will use StarCellBio, a cell and molecular experiment simulator, to examine the subcellular localization of different proteins using fluorescence microscopy.

Learning Objectives

After completing this exercise, you will be able to:

- 1. Use StarCellBio to perform simulated fluorescence microscopy experiments.
- 2. Design and implement an experiment in StarCellBio using the appropriate negative and/or positive controls.
- 3. Analyze fluorescence microscopy images to identify the subcellular localization of proteins.
- 4. Propose a hypothesis that could explain how mutations in a given gene may result in a change in its protein's subcellular localization.

Accessing StarCellBio

To begin:

- 1. Using **Google Chrome**, navigate to: <u>http://starcellbio.mit.edu</u>.
- Sign in to your StarCellBio student account. If you need to set up a student account, use the course code SCB_SampleExercises. Note: while you can complete these exercises as a guest by clicking on Try an Experiment on the right side of the StarCellBio homepage, your work will not be saved.
- 3. Select **"Exercise 1"** from the **Assignments** window.

Introduction

You are completing a summer research project in a lab that studies various signal transduction pathways involved in human diseases. Your advisor has asked you to determine the subcellular localization of a newly discovered set of proteins, called Protein A, B, C, and D within human cells. These proteins are components of a signal transduction pathway that regulates cell proliferation. Mutations in other known components of this pathway result in increased proliferation and tumorigenesis. To characterize the roles of Proteins A-D in this signal transduction pathway, you first investigate their subcellular localization. To do this, you generate human cell lines, each stably expressing a fusion protein in which Green Fluorescent Protein (GFP) is fused in frame to one of the five proteins. These fusion cell lines are called **GFP-ProA**, **GFP-ProB**, etc. You then look at the localization of these fusion proteins using fluorescence microscopy.

Your collaborator in a clinical cancer lab has identified two cancer patients with mutations in this pathway; one with a mutation in the gene encoding Protein A and one with a mutation in the gene encoding Protein B. These mutations do not affect the production of Protein A and B. To understand how these mutations affect the function of Protein A and B, you clone the Mutant A and Mutant B genes and create cell lines stably expressing each of the mutant proteins fused to GFP. These cell lines are called **GFP-Mut ProA** and **GFP-Mut ProB**. Your research project is to determine if these mutations affect the localization of Protein A and B using fluorescence microscopy.

Background Information

Cell Lines

You are provided with the following cell lines:

Strain	Description
No GFP	A human cell line without expression of any GFP or GFP fusion proteins.
GFP	A human cell line stably expressing GFP, which localizes to both the <u>nucleus</u> and <u>cytoplasm</u> .
GFP-ProA	A human cell line stably expressing Protein A fused to GFP.
GFP-ProB	A human cell line stably expressing Protein B fused to GFP.
GFP-ProC	A human cell line stably expressing Protein C fused to GFP.
GFP-ProD	A human cell line stably expressing Protein D fused to GFP.
GFP-Mut ProA	A human cell line stably expressing the mutant Protein A fused to GFP.
GFP-Mut ProB	A human cell line stably expressing the mutant Protein B fused to GFP.
GFP-Nuc	A human cell line stably expressing Histone H2B, a protein that localizes to the <u>nucleus</u> (nuc), fused to GFP.
GFP–Cyto	A human cell line stably expressing RPS20, a protein that localizes to the <u>cytoplasm</u> (cyto), fused to GFP.
GFP-PM	A human cell line stably expressing LCK, a protein that localizes to the plasma membrane (PM), fused to GFP.
GFP-ER	A human cell line stably expressing CALNEXIN, a protein that localizes to the endoplasmic reticulum (ER), fused to GFP.
GFP-NM	A human cell line stably expressing LAMIN B1, a protein that localizes to the nuclear membrane (NM), fused to GFP.

Microscopy

You are provided with the following conditions for fluorescence microscopy experiments:

Condition	Description
GFP (green)	Fluorescence microscopy image captured using the green channel ^{1,2} .

Notes:

¹When GFP is excited with a laser emitting the appropriate wavelength of light, it fluoresces, emitting green light. A scientist can view the green light emitted by GFP molecules in the cells through a microscope's viewfinder when the appropriate emission filter is used on the microscope.

²The images portrayed in StarCellBio's microscopy experiments are in black and white because they were captured by a black and white camera attached to the microscope. When images are captured by a black and white camera, the areas with the brightest or strongest fluorescence appear as white pixels and the areas with the weakest fluorescence appear as black pixels.

Question 1

Conduct the appropriate fluorescence microscopy experiments to determine the subcellular localization of each protein, Proteins A-D. Ensure you perform any relevant control experiments.

Answer the following two questions for each of Proteins A-D:

i. Where is the protein localized within human cells? For each protein, choose the answer that best describes its subcellular localization: plasma membrane, cytoplasm, endoplasmic reticulum (ER), nucleus, or nuclear membrane.

ii. Explain how you arrived at your answer. Your answer should reference your experimental results and include the relevant controls that you used to arrive at your conclusion.

Answer:

Protein A

i.

ii.

Protein B

i.

ii.

Protein C

i.

ii.

Protein D

i.

ii.

Question 2

Perform the appropriate microscopy experiments to determine the subcellular localization of the mutant Protein A in the GFP-Mut ProA cell line. Ensure you perform any relevant controls experiments.

a) Where is the mutant Protein A located in the GFP-Mut ProA cell line? Does the mutant Protein A localize to the same place as wild-type Protein A? Explain how you arrived at your answer using your experimental results.

b) Propose a hypothesis that would explain how a mutation in the gene encoding Protein A would result in the change in subcellular localization, if any, identified in Question 2 (a).

Question 3

Conduct the appropriate properly controlled microscopy experiments within StarCellBio to determine the subcellular localization of the mutant Protein B in the GFP-Mut ProB cell line. Ensure you perform any relevant controls experiments.

a) Where is the mutant Protein B located in the GFP-Mut ProB cell line? Does the mutant Protein B localize to the same place as wild-type Protein B? Explain how you arrived at your answer using your experimental results.

b) Propose a hypothesis that would explain how a mutation in the gene encoding Protein B would result in the change in subcellular localization, if any, identified in Question 3 (a).